Ultrastructure and Dehydrogenase Activity on the Differentiation of the Cerebral Nerve Cell in the Chick Embryo (II)

Saeng Gon Kim
Dept. of Human Biology, College of Dentistry, Chosun University
(Received September 16, 1999)

ABSTRACT

To investigate the changes during the differentiation of the cerebral neurons of the embryogenic day (ED) 9 and 10, investigated the ultrastructural changes in the cerebral neurons by Electronmicroscope, also cerebral protein, the activity of dehydronases (LDH, MDH and SDH) and changes of adenosine triphosphate concentration were analyzed, the result obtained are as follows.

In the ultrastructural changes in the cerebral neurons, chromatin in 9 day-old chick embryos are comparatively distributed to even in nucleolasm and could investigate very prominently that nuclear membrane is double-layer. Especially, Rough endoplasmic reticulum (RER) and Golgi complex are developed well, also polysome is investigated and synaptic vesicles were scattered. In 10 day-old chick embryos, chromatin evenly spread and nuclear membrane could be differentiated prominently. Rough endoplasmic reticulum (RER) contain cytoplasm, mitochondria and Golgi complex are comparatively developed well.

In 9 day-old cultural group of chick embryo cerebrum were separated 37 polypeptide bands and In 10 day-old cultural group of chick embryo cerebrum were separated 38 poly-peptide bands. The more culture time increase, the more the activity of dehydronases (LDH, MDH and SDH) increase. LDH activity was 11.07 (9th day) and 12.12 (10th day), MDH activity was 11.89 (9th day) and 13.44 (10th day) and SDH activity was 8.45 (9th day) and 10.52 (10th day) respectively. The ATP concentration degreesed 10 day-old cultural group than 9 day-old cultural group.

Key words: Chick embryo, Dehydrogenase, ATP, Ultrastructure

† 이 논문은 1997년도 조선대학교 학술연구비의 지원을 받아 연구되었음.
* Correspondence should be addressed to Dr. Saeng Gon Kim, Department of Human Biology, College of Dentistry, Chosun University, #375 Seouk-dong, Kwangju 501–759, Korea, Ph: (062) 220–3701, FAX: (062) 232–6896
Copyright © 1999 Korean Society of Electron Microscopy
서 론

_THRESHOLD_서론의 신경매매형성과정에서 등축에 신경관이 형성되고, 신경관 양측이 용기되어 신경주물이 이루어지며, 신경관이 맵으로 가라앉아 신경고양이 형성하게 된다. 신경주물이 더욱 용기되고 등축에서 서로 만남 신경관이 형성된다. 신경관의 앞쪽 부분은 뒤가 되고, 나머지 부분은 장차 척수가 될 부분이다.

신경관은 내부 중앙에 신경수관이 있으며, 신경수관을 중심으로 판백을 이루는 세포들이 분화됨에 따라 3층으로 구분된다. 신경관에 접하며 세포분열이 활발히 일어나는 종자층, 종자층으로부터 차라나와 층을 이루는 외투층, 그리고 바깥쪽을 이루는 가장자리층으로 구성된다.

외투층의 일부 세포는 신경모세포로 축삭 및 가지 돌기를 내어 신경관으로 되며, 나머지 세포는 신경약교모세포와 신경약교모세포가 된다.

외투층의 신경모세포들이 분화함에 따라 축삭들이 신경관의 바깥쪽을 이루며 가장자리층으로 되기 때문에 가장자리층은 주로 신경생식으로 이루어져는데, 신경심유는 수소충으로 둘러싸여 신선할 때 최대 보이므로 가장자리층을 백색질이라고 하며, 외투층을 주로 이루는 신경원의 신경원체는 회색으로 보이기 때문에 외투층을 회색질이라고 한다.

이와 같이 신경관이 분화함에 따라 척수, 후두 및 중두는 신경관의 중앙 양측에서 형성된 경계고양이 중심으로 위치는 등폭면, 아래는 배쪽면을 형성한다. 등폭면은 감각성인 반면 배쪽면은 운동성으로 된다. 외투층은 형성된 모든 신경세포가 형성되었을 때 중간층에서 세포분열이 정지되어 더 이상 신경세포의 증식이 일어나지 않는다. 신경관에 형성된 미분화세포들은 외막막세포로 되어 중심관의 자체적 내벽인 외막막을 이룬다.

내막신경세포 분화과정에 대한 연구로는 친구를 대상으로 누의 발생에서 신경생장요인의 변화(Larkfors et al., 1991), amino acid 운반체에 의하여 blood–brain barrier를 통하여 수송되는 수송기작(Keeper et al., 1992) 등이 있다. 계통을 대상으로, 현재까지의 연구로는 정상적인 상태에서 소뇌의 Purkinje 신경의 분화(Mancini et al., 1985), 12-O-tetradecanoyl phorbol (TPA)에 의한 신경세포의 영향(Hsu L, 1985), ethanol에 의한 성장신경교세포 (astrocyte) 분화의 영향(Srivastava et al., 1995), oxitation에 의한 신경세포의 degeneration 유도(Kivatitz et al., 1997) 등이 보고되었고, 또한 계통신경세포에 대한 연구로는 신경전달물질인 Serotonin의 영향(Choe et al., 1989), 유기화합물인 malathion의 영향(Flockhart & Casida, 1972; Procter et al., 1976; Kim et al., 1988), L–tryptophan의 영향(Emmanuelsson & Palen, 1975; Palen & Thormerby, 1981; Choe et al., 1985, 1989)에 대한 보고 등이 있으나 현재 계통별생장 내마신경세포분화에 대한 단계별 연구는 미진한 실정이다.

따라서 본 연구는 계통바이러의 신경세포 분화과정을 처리시간을 변화시켜 처리하면서 광학현미경과 전자현미경을 통해 대뇌의 조직 및 세포분화과정에서의 미세구조적 변화 등을 관찰하고 또한 세포생리 및 생화학적인 변화를 SDS–PAGE를 통하여 비교본실험하고, 단백질의 변화과정과 탄수소 효소인 LDH, MDH 및 SDH의 효소활성의 변화 및 ATP 함량의 변화 등을 측정함으로써 빠 발생과정에 대한 기초자료 제공을 위한 종합적인 분석을 통하여 분화단계별 변화에 따른 기준을 설정할 수 있었다.

재료 및 방법

1. 실험재료

정상 사료로 사육한 Abor acres계(전남 나주군 노안면 지산 부화장에서 분양)의 수정란(60±5g)을 부양기 내에서 최적 조건(온도 38±0.5°C, 사태 습도 60%)으로 부양하였다.

2. 실험방법

1) 광학 및 전자현미경 관찰

계통을 적출하여 빛을 반사하여 주 1mm²으로 세밀한 후 0.1 M cacodylate buffer (pH 7.4)로 조성된 2,5% glutaraldehyde에서 5시간 진고정하고, 동일한 취득액으로 15분간 세척한 다음, 동일한 항산액내의 1% osmium tetroxide (O.O.) 용액으로 2시간동안 후고정하였다. 고정된 조직을 동일한 방향으로 15
분석 3회 세척한 다음 alcohol 상순 농도 순으로 탈수하여 propylene oxide로 치환한 후, Epon 포메체로 포매하고, 초박편리 (ultramicrotome LKB-Ⅴ형)를 사용하여 1 µm 두께로 절편 제작한 다음 1% toluidine blue로 염색하여 광학현미경으로 관찰 대상부위를 확인하였다. 확인한 부위를 60nm의 초박절편으로 만들 여 uranyl acetate와 lead citrate로 이중 염색하여 JEM 100CX-II 투과형 전자현미경 (80 kV)으로 관찰하였다.

2) SDS-PAGE에 의한 단백질 분석
계제배니를 적층하여 ultrasonic dismembrator (ARTEK-300, U.S.A.)로 ice bath 상에서 마세시키 후 원심 분리기 (Beckman J2-21)로 0°C에서 10,000 xg로 10분간 원심분리하여 상층액을 액체 질소 (liquid nitrogen)동에 보존하면서 단백질 분석 시료로 사용하였다. 전기영동시에 각 well에 동일한 양의 단백질을 가해주기 위해서 다음과 같이 시료의 단백질 함량을 정량한다. (0.1g glycero1, 625.1 µl upper Tris buffer, 0.02g SDS, 50 µl β-mercaptoethanol, 시료상충액 15 µg brom thymol blue/ml)에 용해한 시료단백질의 함량을 측정하기 위하여 brom thymol blue를 넣지 않은 시료상충액과 시료를 1:1 비율로 혼합하였다. 그 후 2분간 굽는 물에서 증발한 다음, microcentrifuge를 사용하여 12,000 rpm으로 5분간 원심분리하고, 이 상층액을 Bradford (1976)방법에 따라 bovine serum albumin을 표준물질로하여 단백질 정량을 하였다. 단백질이 정량된 시료를 Comassie brilliant blue G-250으로 염색하여 spectrophotometer (Pye Unicam Co., U.K.)로 595 nm에서 absorption density를 측정하고 표준물질로 표준곡선을 작성하여 단백질 함량을 환산하였다.

Lammli (1970) 및 Annapururi (1986)의 방법에 따라 vertical gel kit (Hoefer, SE600)를 이용하여 전기 영동(SDS-PAGE)한다. 먼저 glass plate (16x17 cm)에 1.5 mm spacer를 고정하여 10% acrylamide gel을 만들고, 단백질 함량이 측정된 시료를 조호산단백질 (crude protein) 함량으로 환산하여 0.8 µg protein/µl가 되도록 적응하여 조성한 후, 이 액 30µl과 sample buffer (0.1g glycero1, 625.5 µl upper Tris buffer, 0.02g SDS, 50 µl β-mercaptoethanol, 15 µg brom thymol blue/ml) 30µl를 혼합하여 굽는 물에서 2분간 증발한 다음 방각하였다. 방각된 시료는 microcentrifuge로 12,000 rpm에서 5분간 원심분리하여 상층액 40 µl를 well에 loading하여 각 well당 16 µg의 총량 단백질을 전기영동하고 4°C 하에서 running buffer (3g Tris, 14.4g glycerol, 1g SDS //)를 사용하여 전류 20 mA에서 1시간동안 전주하였다. 전재된 gel은 Comassie brilliant blue (2.5% Coomasie brilliant blue R, 40% methanol, 7% acetic acid)로, 3 시간 염색한 후 acetic acid buffer (5% methanol, 7.5% acetic acid)로 탈색하여 각 시료의 영동상태를 분석하고 표준 단백질은 aldolase (158 KD), bovine serum albumin (66 KD), egg albumin (45 KD), glyceraldehyde 3-phosphate dehydrogenase (36 KD), carbonic anhydrase (29 KD), trysinogen bovine pancreas (24 KD), trypsin inhibitor soybean (20 KD) 그리고 α-lactalbumin (14 KD)를 사용하였다. 탈색된 gel은 gel dryer (Hefer, SE 1160)에서 완전히 건조시킨 후에 densitometer (Shimadzu C-9000)로 570 nm에서 protein band의 밀도를 측정하여 상호 비교하였다.

3) 효소활성도 측정
(1) Lactate dehydrogenase (LDH)의 활성도 측정
LDH의 활성은 Holbrook 등 (1975)의 방법을 이용하여 반응액에 효소원을 가한 후 1분동안 감소되는 NADH의 양을 340nm에서의 흡광도를 측정하여 감소되는 NADH의 양으로부터 활성도를 계산하였다. 반응액 (30 µl)의 조성은 50 mM phosphate buffer (pH 7.4), 0.6 mM sodium pyruvate, 21.3 mM nicotinamide, 0.18 mM NADH로 하고 효소원으로는 추출된 조효소액 0.1 µl를 혼합하여 효소활성도를 측정하였다.

(2) Malate dehydrogenase (MDH)의 활성도 측정
MDH의 활성은 Jou와 Han (1976)의 방법을 이용하여 반응액에 효소원을 가하고 상온에서 1분간의 감소량을 2, 6-dichlorophenol-indophenol (DICPIP)의 양을 spectrophotometer (Shimadzu -1201)를 이용하여 600 nm에서 측정하여 활성도를 측정하였다. 반응액의 조성은 14 mM phosphate buffer (pH 7.4), 0.43 mM NAD⁺, 30 mM nicotinamide, 0.86 mM KCN, 0.034 mM DICPIP, 7.1 mM sodium malate로 하고, 여기에 추출된 조효소액 0.1 µl를 혼합하여 사용하였다.
(3) Succinate dehydrogenase (SDH)의 활성도 측정
SDH의 활성은 Joo와 Han (1976)의 방법을 이용하여 반응액에 효소반응을 가하고 상온에서 1분동안 환원 되는 DCCP의 양을 spectrophotometer (Shimadzu-1201)를 이용하여 600 nm에서 1 mM KCN, 0.04 mM DCCP, 20 mM sodium succinate로 하고, 추출된 조합소액 0.1 ml를 혼합하여 사용하였다.

4) Adenosine triphosphate (ATP) 함량 측정
계량비에서 추출된 시료액 200 μl와 HEPES 환상 용액 (50 mmol Tris acetate buffer, pH 7.75, 1.5 mmol EDTA, 0.075% bovine serum albumin, 10 mmol Magnesium acetate) 200 μl를 혼합하고 (Wulff, 1983) 여기 에 HEPES 환상용액으로 용해된 D-luciferin-luciferase (frol Firefly; Calbiochem Co.) 용액 100 μl를 혼합한 10초 후에 발광한 광도를 luminometer (Berthold, LB9501)를 이용하여 측정하였다 (Bowie, 1978).

결 과

1. 광학 및 전자현미경적 소견

1) 광학현미경적 소견
배양생 9~10일에서 뇌척수액을 분비하는 맥락층이 관찰되었고 양측에 발생중인 대뇌반구는 복층의 선조체와 외측벽을 형성하는 피질부분이 9일군에 비해 10 일군에서 신경세포 분화가 진전되어 두개강의 약 80% 정도가 제외져 있었다 (Figs. 2, 5).

2) 전자현미경적 소견
발생 9일 계배 (Figs. 3, 4)의 염색질은 핵질내에 비교적 고퓨게 분포해 있었으며 핵막은 2중막으로 아주 선명하게 구별되어 있음을 관찰할 수 있었다. 특히 조면소포체와 Golgi복합체가 잘 발달되어 있었으며 또한 polyosome가 관찰되었고 synaptic 소포들이 산재되어 있으면. 10일군의 계배 (Figs. 6, 7)의 신경세포는 염색질이 고퓨 분포해 있었으며 핵막을 뚜렷이 구분할 수 있었다. 세포질을 포함한 조면소포체와 mitochondria.

Fig. 1. SDS–polyacrylamide gel electrophoresis and densitometric curves of cerebrum fluid proteins in chick embryo: (M) marker protein, (A) Embryogenic day 9, (B) Embryogenic day 10.
2. 단백질 조성 및 함량

9일군에서는 총 37개의 단백질 band가 분리되었다. 분자량 330 KD, 320 KD 및 285 KD 250 KD 230 KD, 180 KD, 45 KD, 24 KD 및 15 KD의 단백질 band 등 총 37개의 단백질 band가 분리되었다(Fig. 1).

10일군에서는 총 38개의 단백질 band가 분리되었 다. 380 KD, 330 KD, 320 KD, 285 KD, 250 KD, 125 KD, 45 KD, 24 KD, 17 KD의 단백질 band 등 총 38개 의 단백질 band가 분리되었다(Fig. 1).

3. 효소활성도의 변화

1) Lactate dehydrogenase (LDH)의 활성도

9일군 계배의 LDH 활성도는 11.07 (unit/cerebrum)이었으며, 10일군 계배의 LDH 활성도는 12.12 (unit/cerebrum)이었다. 9일군 계배보다 10일군 계배의 LDH 활 성이 더 증가되었다는 것을 알 수 있었다(Table 1).

2) Malate dehydrogenase (MDH)의 활성도

9일군 계배의 MDH 활성도는 11.89 (unit/cerebrum)이 며 10일군 계배의 MDH 활성도는 13.44 (unit/cerebrum)으로 9일군 계배보다 크게 증가 되었다는 것을 알 수 있었다(Table 1).

Table 1. Dehydrogenase activity of the cerebrum in chick embryo

<table>
<thead>
<tr>
<th>Incubation days</th>
<th>Enzyme activity^+ (unit/cerebrum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lactate dehydrogenase (LDH)</td>
</tr>
<tr>
<td></td>
<td>malate dehydrogenase (MDH)</td>
</tr>
<tr>
<td></td>
<td>succinate dehydrogenase (SDH)</td>
</tr>
<tr>
<td>9</td>
<td>11.07</td>
</tr>
<tr>
<td>10</td>
<td>12.12</td>
</tr>
</tbody>
</table>

^One unit of enzyme activity was defined as 0.1 of optical density change per minute under the experimental condition described in the text.

Table 2. Adenosine triphosphate (ATP) contents of the cerebrum in chick embryo

<table>
<thead>
<tr>
<th>Incubation days</th>
<th>ATP mol/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2.50 × 10^-6</td>
</tr>
<tr>
<td>10</td>
<td>2.10 × 10^-6</td>
</tr>
</tbody>
</table>

3) Succinate dehydrogenase (SDH)의 활성도

9일 계배의 SDH 활성도는 8.45 (unit/cerebrum)이며 10일군의 활성도는 10.52 (unit/cerebrum)이었다. 다른 효소의 활성도보다 적었으나 10일군의 활성도가 증가되었는 것을 알 수 있었다(Table 1).

4. Adenosine triphosphate (ATP)의 변화

9일군 계배의 ATP양은 정상군이 2.50 × 10^-6 mol/ml 이었으며, 10일군의 ATP양은 2.10 × 10^-6로 나타났으 며, 10일군은 9일군에 비해 감소현상을 보였다(Table 2).

고찰

종녀는 앞쪽에 좌우 방을 이룬 후각뇌와 그 위쪽에 대뇌반구들로 구분된다. 후각뇌는 후각양을, 후각으로, 그리고 후각엽으로 구성된다. 고등척추동물노인 포유류에 서는 대뇌반구가 매우 크게 발달하게 후각뇌는 뇌바 닥에 위치하며 위쪽에서 하강할 때 대뇌반구에 의하여 끌려진다. 해양에서 서식하는 포유류에서는 후각뇌 가 혼적적이거나 위치되며, 조류에서는 뒷후각방울을 발달한다. 아마에서 후각엽이 크게 발달되는데, 이는 그들의 생존에 있어서 후각의 중요성을 반영하는 것이다.

대뇌반구는 하등척추동물로부터 고등동물로 가면서 더 뇌부위와 비슷한 뇌의 방위를 얻게 된다. 포유류에서 그 크기의 증가는 최고에 달하여 그 표면에 많은 수볼을 형성하는데, 그 옆주 구조물들 뇌뇌부, 그리고 앞쪽 피질로 뇌뇌부라고 한다.

대뇌 반구의 표면은 일반적으로 두꺼운 회색질이 된 대뇌피질 즉, 외부로 담여 있는데, 이는 계통발생학 적 흐로에서 최근에 분화된 구조물이다.

조류에서는 대뇌반구는 완전적으로 보다 다른 신경 핵들에 총, 즉 과반뇌가 첨가되어 발달된다. 과반뇌 첨에서는 다른 오래된 신경조직들과 연계되어 점지기, 알포기 또는 세기관지와 같은 관에 박은 행동을 하 게 하는 많은 감각중추가 오게 된다. 아마도 조류의 과반뇌는 이주 행동을 위한 소뇌장기의 기능을 위함 여필수적인 것이 같다.

본 연구에서의 미세구조적 변화는 9일 계매군에서
세포질에 비하여 비교적 큰 핵 중앙에 위치한 인. 건 핵 질에 고르게 분포된 염색질과 2중막으로 된 해막이 나타났고, mitochondria는 cristae가 푸루턴한 난원형들이 세포질 내에 고르게 분포되어 관찰되었다. 한편 10일 계백구에서는 고르게 분포된 염색질, 핵과 해막은 푸루턴하게 나타났고, 세포질에서는 조영소포체와 Golgi 복합체가 잘 발달되어 있었다. 이러한 배양시기에 따른 mitochondria의 수치 증가와 cristae의 발달로 세포내 탄수소효소인 SDH, MDH 활성 등의 증가를 가져와 기초 대사를 활성화하는 것으로 생각되며, 결국 배양시기에 따른 미세구조의 변화는 대뇌세포의 분화와 형태형성을 가져온다고 본다.

Bamburg 등(1973)은 계백 발생 중 대뇌의 neurotubule 단백질이 발생 5일과 발생 11일 사이에서 유의성 있게 증가하여 발생 11~17일 사이에는 거의 1/4 정도가 neurotubule 단백질로서 이 기간 동안 그 농도가 일정하게 유지되다가 성체가 되면 감소하였으며, 소뇌에서의 일부 단백질이 발생 8일째에 크게 증가되었다가 발생 16~20일까지는 천차적으로 감소한다고 보고하였다.

Hah 등(1987)은 계백의 중추신경조직으로부터 단백질의 주요 band 범위는 90KD에서 16KD까지 나타나며, 부란 4일 후 약 24~28개의 band가 densitometry에 의해 관찰되었다고 보고하였다. 본 연구에서는 9일간 배양된 계백에서는 37개의 단백질 band가 분리되었고, 10일 배양시 38개의 band가 생성되어 배양기간의 증가에 의한 현상으로 생각된다.

Asztalos와 Nemcsok(1985)는 병가지 중고속속과 삼중체에 의한 조직손상의 정도는 LDH활성이 증가하라며 따라서 대뇌조직 및 혈액내에서 LDH활성이 증가되었는데, 이는 약물의 독성작용에 대한 방어기전의 하나로서 나타나는 현상이라고 하였다. 반면 Choe 등(1985)은 phenylalanine, tryptophan, tyrosine과 같은 방향족 아미노산을 투여하고 15일간 부란한 계백의 경우 LDH, MDH 그리고 SDH와 같은 기초대사에 중요한 효소들의 활성도를 크게 감소된다고 보고하였고, Choe 등(1986)은 부란 10일 후 계백 두부의 LDH, MDH 그리고 SDH와 같은 기초 대사 관련 효소들의 활성도를 측정하였는데 바. LDH 활성도는 tryptophan 투여군의 경우에 정상군에 비해 80% 크게 감소되었고, MDH 활성의 경우에는 79%로 활성이 감소되었으며 SDH의 경우도 56%로 감소가 일어난 것으로 보고하였다. 한편 본 연구에서는 LDH, MDH 및 SDH 활성도는 9일 배양시보다 10일 배양시 증가진상을 보였는데 이는 배양시기에 따라 단수화물, 지질, 아미노산 등의 최종 생물학적 산화회로인 TCA 회로의 효소활성이 증가된 것으로 생각된다.

참고 문헌


FIGURE LEGENDS

Fig. 2. Light micrographs of chick embryo incubated for 9 days. CH, cerebral hemisphere; LV, lateral ventricle; TV, third ventricle; CP, choroid plexus.

Fig. 3. Electron micrograph of neurons in the cerebral cortex of chick embryo incubated for 9 days. Neurons contain oval–shaped nucleus (N) with a prominent nucleolus (No). A lot of free ribosomes (R) are evenly scattered in the cytoplasm. Some vesicles (arrow) are gathered in the lower side of the nucleous. M, mitochondria; G, Golgi complex.

Fig. 4. Electron micrograph of neurons in the cerebral cortex of chick embryo incubated for 9 days. Oval–shaped mitochondria (M) and Golgi complex (G) are observed. Chr, chromatin; N, nucleus; R, ribosome; Ly, lysosome.

Fig. 5. Light micrograph of the brain of chick embryo incubated for 10 days. CH, cerebral hemisphere; CP, choroid plexus.

Fig. 6. Electron micrograph of neurons in the cerebral cortex of chick embryo incubated for 10 days. A number of mitochondria (M) and rough endoplasmic reticulum (RER) are observed. No, nucleolus; Ly, lysosome; N, nucleus.

Fig. 7. Electron micrograph of neurons in the cerebral cortex of chick embryo incubated for 10 days. Neurons contains a nucleus (N) with two prominent nucleoli. A number of mitochondria and polysomes (P) are observed. G, Golgi complex; Nt, Neurotubules; RER, rough endoplasmic reticulum; MB, multivesicular bodies.